| Information | |
|---|---|
| has gloss | eng: In mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. In fact, Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan. |
| lexicalization | eng: Cartan matrices |
| lexicalization | eng: Cartan matrix |
| instance of | (noun) (mathematics) a rectangular array of quantities or expressions set out by rows and columns; treated as a single element and manipulated according to rules matrix |
| Meaning | |
|---|---|
| Italian | |
| has gloss | ita: In matematica, il termine matrice di Cartan ha due significati, entrambi ricondotti al matematico francese Élie Joseph Cartan (1869-1951). Tale termine viene assunto come esempio di legge dell'eponimia di Stigler: infatti le matrici di Cartan nel contesto delle algebre di Lie furono inizialmente studiate dal matematico tedesco Wilhelm Killing, mentre il cosiddetto modello di Killing è dovuto ad Élie Cartan. |
| lexicalization | ita: matrice di Cartan |
| Literary Chinese | |
| has gloss | lzh: 半單李代數表示論中,嘉當矩陣為一整數方陣,曰 A, *(C1)各主斜元a_ii}俱為 2, *(C2)他元不大於 0, *(C3)a_ij} = 0 當且僅當 a_ji}=0 *(C4) A = (正對角矩陣)。(正定對稱矩陣) |
| lexicalization | lzh: 嘉當矩陣 |
| Chinese | |
| has gloss | zho: 在數學中,嘉當矩陣是由法國數學家埃利·嘉當引入的一類特別矩陣,最大的應用在於李代數的分類理論。在有限維代數的表示理論中,嘉當矩陣另有其它意義。 |
| lexicalization | zho: 嘉當矩陣 |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint