e/Hardy's inequality

New Query

Information
has glosseng: Hardy's inequality is an inequality in mathematics, named after G. H. Hardy. It states that if a_1, a_2, a_3, \dots is a sequence of non-negative real numbers which is not identically zero, then for every real number p > 1 one has
lexicalizationeng: Hardy's inequality
instance ofe/Inequality
Meaning
Bosnian
has glossbos: Hardyjeva nejednakost je nejednakost u matematici, koja je dobila naziv po G. H. Hardyju. Ona iskazuje da ako je a_1, a_2, a_3, \dots niz nenegativnih realnih brojeva koji nisu identički jednaki nuli, tada, za svaki realan broj p > 1, imamo da je
lexicalizationbos: Hardyjeva nejednakost
Finnish
has glossfin: Hardyn epäyhtälö kuuluu matematiikassa seuraavasti: Olkoon A=a1,a2,...} jono epänegatiivisia reaalilukuja ja f epänegatiivinen integroituva funktio. Merkitään
lexicalizationfin: Hardyn epäyhtälö
Hungarian
has glosshun: A Hardy-egyenlőtlenség azt mondja ki, hogy ha a_1,a_2,\dots nemnegatív valósokból álló sorozat és p > 1, akkor \sum^\infty_n=1}\left(\fracS_n}n}\right)^p\leq \left(\fracp}p-1}\right)^p\sum^\infty_n=1}a^p_n teljesül, ahol S_n=a_1+\cdots+a_n. A szereplő \left(\fracp}p-1}\right)^pkonstans pontos.
lexicalizationhun: Hardy-egyenlőtlenség
Central Khmer
has glosskhm: វិសមភាពហាតឌី (Hardy's inequality)គឺជាវិសមភាភមួយក្នុងគណិតវិទ្យា ដែលដាក់ឈ្មោះតាមលោក G. H. Hardy។ វាថ្លែងថា បើ a_1, a_2, a_3, \dots ជាស្វីតនៃចំនួនពិតមិនអវិជ្ជមានដែលមិនសូន្យ នោះគ្រប់ចំនួនពិត p > 1 គេមាន
lexicalizationkhm: វិសមភាព ហាតឌី
Swedish
has glossswe: Hardys olikhet är en matematisk olikhet uppkallad efter Godfrey Harold Hardy som säger att om a_1, a_2, a_3, ... är en talföljd av icke-negativa tal med något element skilt från noll så gäller det att: :\sum_n=0}^\infty \left( \fraca_1 + ... + a_n}n} \right)^p < \left( \fracp}p-1} \right)^p \sum_n=0}^\infty a_n^p för varje positivt reellt tal p > 1 .
lexicalizationswe: Hardys olikhet

Query

Word: (case sensitive)
Language: (ISO 639-3 code, e.g. "eng" for English)


Lexvo © 2008-2025 Gerard de Melo.   Contact   Legal Information / Imprint