| Information | |
|---|---|
| has gloss | eng: In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f : U → R (where U is an open subset of Rn) which satisfies Laplace's equation, i.e. |
| lexicalization | eng: Harmonic functions |
| lexicalization | eng: harmonic function |
| subclass of | (noun) (mathematics) a mathematical relation such that each element of a given set (the domain of the function) is associated with an element of another set (the range of the function) map, single-valued function, function, mapping, mathematical function |
| has instance | e/Harmonic coordinates |
| has instance | e/Kelvin transform |
| has instance | e/Newtonian potential |
| has instance | e/Pluriharmonic function |
| has instance | e/ru/Плюрисубгармоническая функция |
| Meaning | |
|---|---|
| Bosnian | |
| lexicalization | bos: Harmonijske funkcije |
| Catalan | |
| has gloss | cat: En matemàtiques, una funció harmònica és una funció dues vegades contínuament derivable f : D → R (on D és un subconjunt obert de R n ) que compleix la equació de Laplace, ie |
| lexicalization | cat: funció harmònica |
| German | |
| has gloss | deu: In der Analysis heißt eine reellwertige, zweimal stetig differenzierbare Funktion harmonisch, wenn die Anwendung des Laplace-Operators auf die Funktion null ergibt. Dieses Konzept kann man auch auf Distributionen und Differentialformen übertragen. |
| lexicalization | deu: harmonische Funktion |
| Persian | |
| has gloss | fas: تابع هارمونیک به توابع حقیقی گفته میشود که دارای مشتقات جزئی مرتبه دوم پیوسته بوده و در معادلهٔ لاپلاس صدق کنند. |
| lexicalization | fas: تابع هارمونیک |
| French | |
| lexicalization | fra: fonction harmonique |
| Hebrew | |
| has gloss | heb: במתמטיקה ופיזיקה, פונקציה הרמונית היא פונקציה \ f:U \to \mathbbR} (כאשר \ U היא קבוצה פתוחה ב- \ \mathbbR}^n ) המקיימת את משוואת לפלס שהיא המשוואה הדיפרנציאלית החלקית |
| lexicalization | heb: פונקציה הרמונית |
| Italian | |
| has gloss | ita: In analisi matematica, una funzione armonica indica una funzione f: U \to \mathbb R definita su un dominio U\subset \mathbb R^n che sia derivabile parzialmente due volte e che soddisfi l'equazione di Laplace, cioè tale che :\sum_i=1}^n \frac \partial^2 f(x) } \partial x_i^2} = 0, \quad \forall x \in U. |
| lexicalization | ita: funzione armonica |
| Japanese | |
| has gloss | jpn: 数学において、調和関数(ちょうわかんすう、harmonic function)とはラプラス方程式の解となる関数のことをいう。 |
| lexicalization | jpn: 調和関数 |
| Dutch | |
| has gloss | nld: Definitie De tweemaal differentieerbare functie f: D → R (met D een open deelverzameling van de Rn) heet harmonisch als op heel D geldt: |
| lexicalization | nld: harmonische functie |
| Polish | |
| has gloss | pol: Funkcja harmoniczna – funkcja rzeczywista f: \mathbb R^n \to \mathbb R, której wszystkie pochodne cząstkowe drugiego rzędu są ciągłe w każdym punkcie spełniająca równanie różniczkowe Laplacea: :\Delta f \equiv 0, gdzie \Delta jest operatorem Laplacea. |
| lexicalization | pol: Funkcja harmoniczna |
| lexicalization | pol: Funkcje harmoniczne |
| Portuguese | |
| has gloss | por: *Para função harmônica em música, veja funcionalidade diatônica Função harmônica, estritamente em Matemática, é qualquer solução não trivial da equação de Laplace, cujas derivadas primeira e segunda são contínuas. Aplica-se em vários sub-domínios da própria matemática, além de encontrar imensa e rica utilidade na física matemática, na física, em análise de processos estocásticos, entre várias aplicações. |
| lexicalization | por: Função harmônica |
| lexicalization | por: Funções harmônicas |
| Moldavian | |
| has gloss | ron: Funcţie armonică este un termen folosit în matematică (mai ales în teoria probabilităţilor), fizică şi se referă la acele funcţii dublu derivabile f : U \rightarrow \mathbb R} , unde U este un interval deschis al lui \mathbb R}^n, care satisfac ecuaţia lui Laplace: |
| lexicalization | ron: Funcţie armonică |
| lexicalization | ron: Funcție armonică |
| Russian | |
| has gloss | rus: Гармони́ческая фу́нкция — вещественная функция U, дважды непрерывно дифференцируемая в евклидовом пространстве D, удовлетворяющая уравнению Лапласа: \Delta U = 0, где \Delta=\sum_i=1}^n\frac\partial^2}\partial x_i^2} — оператор Лапласа, то есть сумма вторых производных по всем переменным. |
| lexicalization | rus: гармоническая функция |
| lexicalization | rus: Гармонические функции |
| Castilian | |
| has gloss | spa: En matemáticas, una función armónica es una función dos veces continuamente derivable f : D → R (donde D es un subconjunto abierto de Rn) que cumple la ecuación de Laplace, i.e. |
| lexicalization | spa: Funcion armonica |
| lexicalization | spa: función armónica |
| Swedish | |
| has gloss | swe: En harmonisk funktion är en funktion som uppfyller Laplaces ekvation. |
| lexicalization | swe: harmonisk funktion |
| Turkish | |
| has gloss | tur: Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rnnin U gibi açık bir kümesi üzerinde f : U → R' şeklinde tanımlı, Laplace denklemini, yani |
| lexicalization | tur: harmonik fonksiyon |
| Chinese | |
| has gloss | zho: 在数学、数学物理学以及随机过程理论中,都有调和函数的概念。一个调和函数是一个二阶连续可导的函数 f : U → R(其中 U 是 Rn 里的一个开子集),其满足拉普拉斯方程,即在 U上满足方程: |
| lexicalization | zho: 调和函数 |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint