| German |
| has gloss | deu: Hermitesche Operatoren spielen eine zentrale Rolle in der Quantenmechanik, denn alle physikalischen Observablen werden durch lineare, selbstadjungierte Operatoren beschrieben, und diese sind hermitesch. |
| lexicalization | deu: hermitescher Operator |
| French |
| has gloss | fra: En mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme despace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype despace de Hilbert est un espace euclidien, cest-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni dun produit scalaire. Lanalogue sur le corps des complexes sappelle un espace hermitien. Sur ces espaces de Hilbert de dimension finie, un endomorphisme autoadjoint est diagonalisable dans une certaine base orthonormale et ses valeurs propres (même dans le cas hermitien) sont réelles. Les applications des propriétés structurelles d'un endomorphisme autoadjoint (donc de sa forme quadratique associée) sont nombreuses. |
| lexicalization | fra: Endomorphisme auto-adjoint |
| lexicalization | fra: endomorphisme autoadjoint |
| lexicalization | fra: Opérateur auto-adjoint |
| lexicalization | fra: Opérateur autoadjoint |
| lexicalization | fra: Opérateur hermitien |
| Hebrew |
| has gloss | heb: אופרטור הרמיטי הוא סוג של אופרטור מתמטי, או ליתר דיוק אופרטור לינארי ממרחב הילברט לעצמו, המקיים תכונות מיוחדות (שיפורטו בהמשך) שהופכות אותו לשימושי במיוחד. |
| lexicalization | heb: אופרטור הרמיטי |
| Italian |
| has gloss | ita: In matematica, in particolare in algebra lineare, un operatore autoaggiunto, detto anche operatore hermitiano o endomorfismo simmetrico, è un operatore lineare su uno spazio di Hilbert H che è uguale al suo aggiunto. La matrice che rappresenta un operatore autoaggiunto è una hermitiana, ed in dimensione finita il teorema spettrale asserisce che ogni operatore autoaggiunto di uno spazio vettoriale reale dotato di un prodotto scalare definito positivo ha una base ortonormale formata da autovettori. Equivalentemente, ogni matrice simmetrica reale è simile ad una matrice diagonale tramite una matrice ortogonale i cui coefficienti sono reali. |
| lexicalization | ita: operatore autoaggiunto |
| lexicalization | ita: Operatore hermitiano |
| Polish |
| lexicalization | pol: Operator hermitowski |
| Portuguese |
| has gloss | por: Um Operador auto-adjunto é um operador linear em um espaço vetorial com produto interno que é o adjunto de si mesmo. No caso de espaços de dimensão finita, a matriz que representa esse operador é igual à sua transposta conjugada. |
| lexicalization | por: Operador auto-adjunto |
| lexicalization | por: Operador autoadjunto |
| Russian |
| has gloss | rus: Оператор в \mathfrak H называется самосопряжённым или гипермаксимальными эрмитовым, если он совпадает со своим сопряжённым. |
| lexicalization | rus: Эрмитов оператор |
| Castilian |
| has gloss | spa: Un operador hermítico definido sobre un espacio de Hilbert es un operador lineal que, sobre un cierto dominio, coincide con su propio operador adjunto. Una propiedad importante de estos operadores es que sus autovalores son siempre números reales. |
| lexicalization | spa: Operador hermitiano |
| lexicalization | spa: Operador hermitico |
| lexicalization | spa: operador hermítico |
| Ukrainian |
| has gloss | ukr: Лінійний оператор L:H\to H у комплексному гільбертовому просторі називається ермітовим, якщо для всіх u,v\in H виконується тотожність (Lu,v)=(u,Lv)\, , що записується також як L=L^+. Ермітові оператори відіграють важливу роль у квантовій механіці. У формалізмі Шредінгера, вімірюваним фізичним величинам відповідають ермітові (насправді, самоспряжні) оператори у гільбертовому просторі векторів стану . |
| lexicalization | ukr: Ермітів оператор |
| Chinese |
| has gloss | zho: 在數學裏,作用於一個有限維的內積空間,一個自伴算子等於自己的伴隨算子;等價地說,表達自伴算子的矩陣是埃爾米特矩陣。埃爾米特矩陣等於自己的共軛轉置。根據有限維的譜定理,必定存在著一個正交歸一基,可以表達自伴算子為一個實值的對角矩陣。 |
| lexicalization | zho: 自伴算子 |