e/Kummer surface

New Query

Information
has glosseng: In algebraic geometry, a Kummer quartic surface, first studied by , is an irreducible algebraic surface of degree 4 in \mathbbP}^3 with the maximal possible number of 16 double points. Any such surface is the Kummer variety of the Jacobian of a smooth hyperelliptic curve of genus 2; i.e. a quotient of the Jacobian by the Kummer involution x ↦ −x. The Kummer involution has 16 fixed points: the 16 2-torsion point of the Jacobian, and they are the 16 singular points of the quartic surface. Resolving the 16 double points of the quotient of a (possibly nonalgebraic) torus by the Kummer involution gives a K3 surface with 16 disjoint rational curves; these K3 surfaces are also sometimes called Kummer surfaces.
lexicalizationeng: Kummer surface
instance ofc/Algebraic surfaces
Meaning
German
has glossdeu: Die kummerschen Flächen sind eine Menge von algebraische Flächen der Ordnung 4, die erstmals von Ernst Eduard Kummer (1810–1896) untersucht wurden.
lexicalizationdeu: Kummersche Flächen

Query

Word: (case sensitive)
Language: (ISO 639-3 code, e.g. "eng" for English)


Lexvo © 2008-2025 Gerard de Melo.   Contact   Legal Information / Imprint