e/Zariski topology

New Query

Information
has glosseng: In mathematics, namely algebraic geometry, the Zariski topology is a particular topology chosen for algebraic varieties that reflects the algebraic nature of their definition. It is due to Oscar Zariski and took a place of particular importance in the field around 1950. Joe Harris says in his introductory lectures that it is "not a real topology" and points out that in the Zariski topology, every two algebraic curves are homeomorphic simply because their underlying sets have equal cardinalities and their topologies are both cofinite. Naturally, such a homeomorphism is not a regular map, but this merely highlights the fact that the deep structure of algebraic varieties is mostly encoded in the choice of functions between them rather than of topologies on them. In this sense, the Zariski topology is an organizational tool rather than an object of study (compared with the role of the topology in algebraic topology). The more subtle étale topology was discovered by Grothendieck in the 1960s; while it reflects the geometry far more accurately it is also highly nontrivial even to describe and is not as basic to the subject.
lexicalizationeng: Zariski Topology
lexicalizationeng: Zariski's topology
instance ofc/Algebraic varieties
Meaning
German
has glossdeu: Die Zariski-Topologie ist ein Begriff aus dem mathematischen Teilgebiet der algebraischen Geometrie. Sie ist die natürliche Topologie auf den Studienobjekten der algebraischen Geometrie, den algebraischen Varietäten oder allgemeiner den Schemata.
lexicalizationdeu: Zariski-Topologie
lexicalizationdeu: Zariskitopologie
Finnish
lexicalizationfin: Zariskin topologia
Hebrew
has glossheb: במתמטיקה, טופולוגיית זריצקי היא טופולוגיה המוגדרת על המרחב האפיני, כך שהיריעות האלגבריות הן קבוצות סגורות. הכלים הטופולוגיים שטופולוגיית זריצקי מזריקה לחקר הפולינומים, הופכת אותה לטופולוגיה הסטנדרטית בגאומטריה אלגברית ובתחומים הנושקים לה, כמו חבורות אלגבריות.
lexicalizationheb: טופולוגית זריצקי
Italian
has glossita: In matematica, e più precisamente in geometria algebrica, la topologia di Zariski (dal nome del matematico Oscar Zariski) è una topologia sullo spazio affine \mathbbA}^n_k i cui chiusi sono tutti e soli gli insiemi algebrici, cioè i luoghi dove si annullano contemporaneamente i polinomi di un ideale di k[x_1, \dots, x_n]. Si può costruire la topologia di Zariski anche sullo spazio proiettivo \mathbbP}^n_k considerando come chiusi gli insiemi algebrici proiettivi.
lexicalizationita: topologia di Zariski
Dutch
has glossnld: Zariskitopologie is een begrip in de wiskunde, op het kruispunt van de takken topologie en algebraïsche meetkunde.
lexicalizationnld: Zariski-topologie
lexicalizationnld: Zariskitopologie
Portuguese
has glosspor: Em matemática, a topologia de Zariski é uma estrutura básica na geometria algébrica, especialmente desde os anos 1950. Nesta topologia, assim chamada devido a Oscar Zariski, os conjuntos fechados são aqueles que consistem dos zeros comuns a um conjunto de polinômios.
lexicalizationpor: Topologia de Zariski
Russian
has glossrus: Тополо́гия Зари́сского в алгебраической геометрии — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и заняла важное место в этой области в 1950-х.
lexicalizationrus: топология Зарисского
Castilian
has glossspa: En matemáticas, la topología de Zariski es una estructura básica en la geometría algebraica, especialmente desde los años 1950.
lexicalizationspa: Topologia de Zariski
lexicalizationspa: topología de Zariski
Swedish
has glossswe: Inom matematik är Zariskitopologin en topologi som brukar användas inom algebraisk geometri vid studiet av varieteter. Den infördes först av Oskar Zariski för att studera både affina varieteter och projektiva varieteter. När Alexander Grothendieck sedan reformerade den algebraiska geometrin infördes en modern definition.
lexicalizationswe: Zariskitopologi
Media
media:imgSpec Z.png

Query

Word: (case sensitive)
Language: (ISO 639-3 code, e.g. "eng" for English)


Lexvo © 2008-2025 Gerard de Melo.   Contact   Legal Information / Imprint