| Information | |
|---|---|
| has gloss | eng: In number theory, zero-sum problems are a certain class of combinatorial questions. In general, a finite abelian group G is considered. The zero-sum problem for the integer n is the following: Find the smallest integer k such that any sequence of elements of G with length k contains n terms that sum to 0. |
| lexicalization | eng: Erdoes-Ginzburg-Ziv theorem |
| lexicalization | eng: Erdos-Ginzburg-Ziv theorem |
| lexicalization | eng: Erdös-Ginzburg-Ziv theorem |
| lexicalization | eng: Erdős-Ginzburg-Ziv theorem |
| lexicalization | eng: Erdős–Ginzburg–Ziv theorem |
| lexicalization | eng: zero-sum problem |
| instance of | e/Mathematical Theorems |
| Meaning | |
|---|---|
| Esperanto | |
| has gloss | epo: En nombroteorio, nulo-suma problemo estas la problemo trovi la plej malgrandan entjeron k tian ke ĉiu vico de eroj de G kun longo k enhavas n erojn kies sumo estas la neŭtra elemento (0), kie G estas finia komuta grupo kaj n estas donita entjero. |
| lexicalization | epo: Nulo-suma problemo |
| Hungarian | |
| has gloss | hun: Az Erdős–Ginzburg–Ziv-tétel (röviden EGZT) egy matematikai (azon belül kombinatorikus számelméleti) tétel, melyet 1961-ben bizonyított három névadója (Erdős Pál, Abraham Ginzburg és Abraham Ziv: Theorem in additive number Theory. Bull. Research Council, Israel, 10F; 41.-43.; 1961.). |
| lexicalization | hun: Erdős-Ginzburg-Ziv-tétel |
| lexicalization | hun: Erdős–Ginzburg–Ziv-tétel |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint