| Information | |
|---|---|
| has gloss | eng: In mathematics, a closure operator on a set S is a function cl: P(S) → P(S) from the power set of S to itself which satisfies the following conditions for all sets X,Y ⊆ S. :| border="0" |- | X ⊆ cl(X) | (cl is extensive) |- | X ⊆ Y implies cl(X) ⊆ cl(Y) | (cl is increasing) |- | cl(cl(X)) = cl(X) | (cl is idempotent) |} |
| lexicalization | eng: Closure operators |
| lexicalization | eng: closure operator |
| subclass of | (noun) (mathematics) a symbol or function representing a mathematical operation operator |
| has instance | e/Approach space |
| has instance | e/Closure (mathematics) |
| has instance | e/Closure (topology) |
| has instance | e/Cylindric algebra |
| has instance | e/Galois connexion |
| has instance | e/Idempotence |
| has instance | e/Interior algebra |
| has instance | e/Monadic Boolean algebra |
| has instance | e/P closure |
| has instance | e/Preclosure operator |
| has instance | e/Proximity space |
| has instance | e/Reflexive closure |
| has instance | e/Reflexive transitive closure |
| has instance | e/Reflexive transitive symmetric closure |
| has instance | e/Sequential closure operator |
| has instance | e/Symmetric closure |
| has instance | e/Transitive closure |
| Meaning | |
|---|---|
| Hungarian | |
| lexicalization | hun: Lezárási operátor |
| Korean | |
| lexicalization | kor: 닫힘 연산 |
| Polish | |
| has gloss | pol: Operator konsekwencji - pojęcie wprowadzone do logiki przez Alfreda Tarskiego. Motywacją dla jego wprowadzenia była formalizacja pojęcia konsekwencji określonego zbioru przesłanek. |
| lexicalization | pol: operator konsekwencji |
| Russian | |
| has gloss | rus: Оператор замыкания — обобщение интуитивной концепции замыкания. Именно: если \langle P, \leqslant\rangle — частично упорядоченное множество, оператор C: P\to P будет называться оператором замыкания, если выполнены три условия: |
| lexicalization | rus: Оператор замыкания |
| Chinese | |
| has gloss | zho: 在数学中,给定偏序集合 (P, ≤),在 P 上的闭包算子是函数 C : P → P 带有如下性质: *x ≤ C(x) 对于所有 x,就是说 C 是扩展性的。 *如果 x ≤ y,则 C(x) ≤ C(y),就是 C 是单调递增的。 *C(C(x)) = C(x) 对于所有的 x,就是说 C 是幂等函数。 |
| lexicalization | zho: 闭包算子 |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint